Range-based non-orthogonal ICA using cross-entropy method

نویسندگان

  • S. Easter Selvan
  • Amit Chattopadhyay
  • Umberto Amato
  • Pierre-Antoine Absil
چکیده

A derivative-free framework for optimizing a non-smooth range-based contrast function in order to estimate independent components is presented. The proposed algorithm employs the von-Mises Fisher (vMF) distribution to draw random samples in the cross-entropy (CE) method, thereby intrinsically maintaining the unit-norm constraint that removes the scaling indeterminacy in independent component analysis (ICA) problem. Empirical studies involving natural images show how this approach outperforms popular schemes [1] in terms of the separation performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Blind CFO Estimation and ICA based Equalization for Wireless Communication Systems

In this thesis, a number of semi-blind structures are proposed for Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication systems, with Carrier Frequency Offset (CFO) estimation and Independent Component Analysis (ICA) based equalization. In the first contribution, a semi-blind non-redundant single-user Multiple-Input Multiple-Output (MIMO) OFDM system is proposed, with ...

متن کامل

An Assessment of Hermite Function Based Approximations of Mutual Information Applied to Independent Component Analysis

At the heart of many ICA techniques is a nonparametric estimate of an information measure, usually via nonparametric density estimation, for example, kernel density estimation. While not as popular as kernel density estimators, orthogonal functions can be used for nonparametric density estimation (via a truncated series expansion whose coefficients are calculated from the observed data). While ...

متن کامل

Simple LU and QR Based Non-orthogonal Matrix Joint Diagonalization

A class of simple Jacobi-type algorithms for non-orthogonal matrix joint diagonalization based on the LU or QR factorization is introduced. By appropriate parametrization of the underlying manifolds, i.e. using triangular and orthogonal Jacobi matrices we replace a high dimensional minimization problem by a sequence of simple one dimensional minimization problems. In addition, a new scale-invar...

متن کامل

Multivariate geostatistical estimation using minimum spatial cross-correlation factors (Case study: Cubuk Andesite quarry, Ankara, Turkey)

The quality properties of andesite (Unit Volume Weight, Uniaxial Compression Strength, Los500, etc.) are required to determine the exploitable blocks and their sequence of extraction. However, the number of samples that can be taken and analyzed is restricted, and thus the quality properties should be estimated at unknown locations. Cokriging has been traditionally used in the estimation of spa...

متن کامل

Optimization Using Fourier Expansion over a Geodesic for Non-negative ICA

We propose a new algorithm for the non-negative ICA problem, based on the rotational nature of optimization over a set of square orthogonal (orthonormal) matrices W, i.e. where W W = WW = In. Using a truncated Fourier expansion of J(t), we obtain a Newton-like update step along the steepest-descent geodesic, which automatically approximates to a usual (Taylor expansion) Newton update step near ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012